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ABSTRACT 
 
 In this paper we examine two couplings that produce 
time-shifted synchronization in a pair of chaotic 
oscillators. The couplings do not utilize an explicit time-
delay term. We characterize the observed synchronization 
by determining the dependence of the time shift and cross 
correlation between the drive and response oscillators on 
a tunable parameter. Our observations agree well with 
estimates of the time shift and cross correlation using a 
transfer function. 
 
 

1. INTRODUCTION 
 
 Coupled chaotic oscillators often display some form 
of synchronous behavior [1, 2]. Recently, varieties of 
synchronization have been identified where the oscillator 
waveforms are nearly but not exactly identical [3-9]. In 
these cases, either the coupling or a parameter mismatch 
produces a time-shifted synchronization state with some 
finite amplitude error (e. g., see Fig. 1). It remains an 
interesting open question whether natural systems utilize 
such mechanisms. On the other hand, in engineered 
systems applications have been identified where an easily 
varied time delay is desired. 
 Recently, chaotic oscillators have been suggested as 
efficient sources for generating wide-bandwidth 
waveforms for various applications. For example, the 
broadband and non-repeating nature of chaos provides an 

ideal combination of high range resolution and no range 
ambiguity for radar. Local coupling can synchronize an 
extended array of chaotic oscillators, thereby providing a 
coherent state suitable for power combining in a wide-
bandwidth phased array antenna. Moreover, time-shifted 
synchronization provides a mechanism to steer the 
radiated beam. A tunable coupling strategy may be used 
that continuously varies the time shift, thereby 
electronically steering the beam to a desired direction [3, 
5, 6, 9]. Effectively, these systems trade some decrease in 
cross-correlation between oscillators for a practical means 
of obtaining a tunable time shift. In practice, this tradeoff 
appears as reduced beam quality for larger steering angles 
and limits the maximum steering angle for these arrays. 
 In this paper, we examine two unidirectional 
coupling schemes that produce non-trivial time shifts and 
cross-correlations, and we compare these observations to 
predictions based on a new method for estimating 
characteristics of the synchronized state [10]. This method 
uses a transfer function derived from the coupling model 
to provide estimates of the time shift and amplification or 
attenuation between the drive and response waveforms. 
Each coupling scheme involves a parameter to tune the 
time shift, and typically a large range of time shifts can be 
obtained. Overall, we find that observed time shifts and 
cross-correlations agree well with estimates based on the 
transfer function and that the agreement increases with 
coupling strength. 
 
 

2. TIME-SHIFTED SYNCHRONIZATION 
 
 We consider a pair of identical chaotic oscillators 
coupled unidirectionally of the form 
 ( ) ( ) ( ), ,x f x y f y g x y= = +& &  (1) 
where x(t) and y(t) are the state vectors of the drive and 
response oscillator, respectively, f is a chaotic flow, and g 
is a linear coupling function. Since f is chaotic, it is 
necessarily nonlinear and the state vectors x and y each 
contain at least three scalar states. 
 Here, we consider g of the form  
 ( ) { }1 1 1̂, ,g x y k Px Qy e= −  (2) 
where 1x  and 1y  are the first components of the state 
vectors x and y, respectively, k is the coupling strength, 

( )1̂ 1, 0, 0 Te = , and P and Q are linear scalar operators. 
At least five coupling schemes of this form have 
previously been identified that produce approximate time-
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Figure 1. Example of time-shifted synchronization in a 

pair of coupled Rössler oscillators. The response 
waveform y1(t) lags the drive waveform x1(t) and is 

slightly attenuated. 
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shifted synchronization [6-8, 10 ,11]. In these cases, 
identical synchronization is not an exact solution of Eqs. 
(1) and (2). Instead, we consider the drive and response 
synchronized when 
 { } ( )1 1k Px Qy tε− =  (3) 

and ( )tε  is small compared to the first component of the 
vector field f . In other words, the coupling term only 
provides a small perturbation to the natural dynamics of 
the response oscillator. 
 Apart from a time shift, the waveforms ( )1x t  and 

( )1y t  are typically similar in shape, with the primary 
distortion being just a change in amplitude. Thus, we can 
write 
 ( ) ( )1 1y t Ax t τ≈ −  (4) 
where τ is the time shift and A  is the approximate gain 
(or attenuation) of the response waveform relative to the 
drive. For a given lag tδ , we define the cross correlation 
function 

 ( )
( ) ( )
( ) ( )

1 1

1 1

,
x t y t t dt

C t
x t x t dt

δ
δ

+
≡ ∫

∫
 (5) 

where we note the normalization does not treat the drive 
and response waveforms symmetrically. Assuming Eq. 
(4), we recognize tδ τ=  maximizes the cross correlation 
and 
 ( )C Aτ ≈  (6) 
so that the cross correlation provides an estimate of the 
response gain. 
 It has been shown that a reasonable estimate of the 
time shift τ  and cross correlation ( )C τ  can be derived 

by neglecting the small perturbation ( )tε  [10]. Thus, 

setting ( ) 0tε =  in Eq. (3) and taking a Fourier transform, 
we can write 

 ( ) ( ) ( )1 1ˆ ˆy T xω ω ω=  (7) 

where ( )1ŷ ω  and ( )1̂x ω  are the Fourier transforms of 

( )1x t  and ( )1y t , respectively. We note that the transfer 

function ( )T ω depends only on the linear operators 
P and Q  in this approximation, and that for many simple 
operators ( )T ω  can be calculated analytically. The time 
shift between the drive and response is then predicted to 
be 

 
( )( )0

0

arg T ω
τ

ω
=  (8) 

while the predicted cross correlation is 
 ( ) ( )0C Tτ ω=  (9) 

where 0ω  is the dominant angular frequency of the 
specific chaotic oscillator under consideration, and 

( )( )0arg T ω  represents the phase angle of the complex 
transfer function evaluated at this frequency.  
 Below we introduce two examples of couplings that 
produce approximate time shifted synchronization. Each 
coupling includes a tunable parameter that varies the time 
shift and cross correlation of the synchronized state. We 
determine the functional dependence of these quantities 
on the tunable parameter and compare numerical results 
with predictions made using a transfer function. 
 
 

3. FIRST EXAMPLE 
 
 We first consider a pair of Rössler oscillators whose 
flow is determined by the vector field 

 ( )
( )

2 3

1 2

1 3

0.15 ,
0.2 10

x x
f x x x

x x

− −⎛ ⎞
⎜ ⎟= +⎜ ⎟
⎜ ⎟+ −⎝ ⎠

 (10) 

and who are coupled by the function  
 ( ) ( ) ( ) ( ){ }1 1 1 1̂, ,g x y k x t y t y t eλ= − + &  (11) 

where 0.3k =  and λ  is a tunable parameter. Typical 
time series of 1x  and 1y  with 0.5λ = − , shown in Fig. 1, 
exhibit a state of time-shifted synchronization. The 
primary form of distortion of the response trajectory 
relative to the drive is a small degree of attenuation. 
 Following the procedure described in the preceeding 
section, we obtain the transfer function 

 ( ) ( )
( )

1

1

1 .
1

y
T

x i
ω

ω
ω ωλ

≡ =
−

%

%
 (12) 

The spectral content of ( )1x t  is dominated by the single 
frequency 0 1.04ω ≈ . The magnitude of the transfer 
function at 0ω , given by 

-3 0 3
0.0

0.5

1.0

 

 

C
(τ

)

λ

(a) (b)

-3 0 3

-1

0

1

 

τ 0

λ

 
Figure 2. (a) Correlation and (b) time shift between 
coupled Rössler oscillators observed in numerical 
solutions (circles) and estimated using the transfer 

function Eq. (12) (line). 
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 ( )0 2 2
0

1 ,
1

T ω
ω λ

=
+

 (13) 

suggests that the amplitude of the response oscillation will 
be attenuated relative to the drive when 0λ ≠ . The 
phase delay of the transfer function, divided by 0ω  
predicts the time shift of the synchronized state. In this 
case, 

 
( )( ) ( )0 1

0
0 0

arg 1 tan ,
T ω

τ ω λ
ω ω

−= =  (14) 

Notably, at large values of λ  the predicted time shift 

asymptotes to ( )02π ω± . 
 We compare these theoretical estimates to 
observations of the correlation function, Eq. (5). The 
value of tδ  at which ( )C tδ  reaches its first maximum is 
identified as the observed time shift τ . The magnitude of 
( )C tδ  at its maximum is a measure of the gain or 

attenuation of the response waveform relative to the drive. 
The time series data is generated by numerical solution of 
Eqs. (1), (10), and (11). 
 Fig. 2(a) shows the magnitude of the transfer 
function, ( )0T ω  (solid line), agrees well with the 

observed correlation, ( )C τ  (circles), over a wide range 
of values of the parameter λ . Interestingly, the agreement 
is good even for large values of λ  where ( ) 0.4C τ < . 
This is surprising since, under these conditions, the 
approximation that ( )tε  is negligibly small is 
presumably rather poor.  
 The predicted values of the time shift also agree quite 
well with the observed time shift τ , as shown in 
Fig. 2(b). Most important, the observed asymptotic levels 
of the time shift agree with the values predicted by Eq. 
(14) to within a few percent. Again, it is surprising that 
the agreement is so good at large values of λ . 
 Thus far we have considered only a single value of 
the coupling strength, k, and have not addressed the role 
of coupling strength in determining the properties of the 
synchronized state. Obviously, the coupling strength must 
be sufficient to guarantee stability or the properties of the 
synchronized state will not be observable [1, 2]. However, 
there typically exists a range of coupling strengths over 
which synchronization is stable, and the question remains 
in this case whether the coupling strength further affects 
the time shift and cross correlation. One might guess that 
stronger coupling would tend to minimize the difference 
term 1 1Px Qy−  in Eq. (1). Thus, the properties of the 
response state 1y  would more closely agree with the 
transfer function. Here we examine a particular example 
that is consistent with this hypothesis. (We note that the 
effects of increased coupling on the other states of the 
response may be quite different. In fact, the resemblance 

of 2y  and 3y  to their drive counterparts may actually 
decrease with increasing coupling strength.) 
 We focus on the range of coupling strengths from 

0.1k =  to 2.0k = . The lower bound on this range is 
determined by the requirement that synchronization must 
be stable. We find that the transition between 
synchronized and unsynchronized dynamics occurs 
somewhere around 0.1k = .The upper bound is set by the 
fact that when 1k λ−=  the derivative term in the coupling 
exactly balances the derivative term on the left hand side 
of the equation. This cancellation changes the character of 
the equations and causes problems for numerical 
simulation. Thus we avoid it by constraining k to fall 
below 1λ−  for the particular value of λ  we wish to 
consider. We fix the value 0.5λ = −  under the assumption 
that typical behavior occurs at this value. 
 Following the same procedures as described above, 
we can numerically integrate this system and observe the 
time shift and cross correlation as the coupling strength 
k  is varied. We quantify the agreement between the 
observed values and the predictions of the transfer 
function by calculating the root mean square deviation 
between the observed and predicted values as a percent of 
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Figure 3. Root mean square error in the transfer 

function predictions of the (a) correlation and (b) time 
shift as a percentage of the observed value. 
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the observed value. Fig. 3 shows the prediction error in 
the (a) correlation and (b) time shift as functions of the 
coupling strength. As expected the prediction error 
decreases with increasing coupling strength over the 
entire range. Thus the transfer function provides a better 
prediction as the coupling strength is increased. 
 
 

4. SECOND EXAMPLE 
 
 We next examine a variation of the previous coupling 
scheme that includes a second derivative. Specifically, the 
coupling scheme is 
 ( ) ( )1 1 1 1 1̂, ,g x y k x y y y eλ α= − + +& &&  (15) 
where λ  is a tunable parameter and α  is a fixed 
parameter. The class of oscillators introduced by Sprott is 
one for which this coupling is easily implemented [12]. 
Here we use one such oscillator whose flow is defined by 

 ( )
2

3

3 2 1

.
0.6 2

x
f x x

x x x

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟− − + −⎝ ⎠

 (16) 

By numerical solution we determine the dominant 
frequency in the spectral content of ( )1x t  to be 
0.958 0.005± . The transfer function for this coupling is 
 ( ) 21 .T iω αω ωλ= − +  (17) 
The predicted cross-correlation is 
 ( ) 2 2 2 2

0 0(1 ) .C τ αω ω λ= − +  (18) 
Notably, the correlation at 0λ =  is predicted to be 

2
01 αω− . All previous couplings that have been analyzed 

using the transfer function produced identical 
synchronization at 0λ =  [6-8, 10 ,11]. The predicted 
time shift is  

 1 0
2

0 0

1 tan .
1
ω λ

τ
ω αω

− ⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 (19) 

 We numerically integrate the system to generate time 
series of 1x  and 1y  at each of a range of values for λ  
and with 20k =  and 0.5α = . From the numerical 
simulation, we estimate the time shift and attenuation 
from the cross-correlation function, Eq. (5). Fig. 4 shows 
the observed dependence (circles) of (a) ( )C τ  and (b) τ  
on the parameter λ . The observed time shift dependence 
on λ  follows closely the prediction of Eq. (19). The 
observed cross-correlation at 0λ =  is 0.56 0.005±  which 
agrees well with the prediction of 

2
01 0.541 0.005αω− = ± . The correlation then grows 

quadratically as λ  increases, in agreement with Eq. (18) 

and reaches unity around 0.9λ = . Fig. 5 shows a typical 
time series of 1x  and 1y  with 0.9λ = which verifies the 
absence of significant distortion despite the time shift. 
 
 

5. CONCLUCIONS 
 
 We have shown two examples of couplings that 
produce time shifted synchronization and verified the 
accuracy of the transfer function in predicting the 
observed properties of the synchronized state. These 
results represent further evidence of both the wide range 
of coupling that can produce time-shifted synchronization 
and the usefulness of the transfer function in analyzing 
this phenomenon. In the first example, we observed that 
the accuracy improves with increasing coupling strength. 
This result suggests that strong coupling would be 
preferable in applications where that the transfer function 
is utilized as a design tool [10]. 
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Figure 5. Example of time-shifted synchronization in a 

pair of coupled Sprott oscillators. The response 
waveform y1(t) anticipates the drive waveform x1(t). 
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